PASSIVE IMMUNIZATION WITH ANTIBODY TARGETING N-TERMINAL TRUNCATED TAU REVERSES NEUROPATHOLOGY AND COGNITIVE DEFICITS IN TWO PRECLINICAL MOUSE MODELS OF AD.

Aims Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making the targeting of tau more clinically relevant than Aβ-directed therapies for the cure of Alzheimer’s disease (AD).

Methods We have explored whether passive immunization with the 12A12mAb (26-36aa of tau protein; DRKD(25)-QGGYTMHQDQE epitopes phosphorylation independent state) could improve the AD phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody (mAb) which selectively binds the pathologically-relevant neurotoxic 20-22kDa NH2-derived tau peptide (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s).

Results We found out that intravenous (i.v.) administration of 12A12mAb into symptomatic (6-month-old) animals: (i) selectively engages and successfully neutralizes its target without cross-reacting with physiological full-length form of tau; (ii) reduces both pathological tau and APP/Aβ metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based NOR and OPR behavioural tasks; (iv) relieves the loss in hippocampal dendritic spine density in pyramidal CA1 neurons; (vi) rescues the AD-related electrophysiological deficits in induction of hippocampal LTP (Long Term Potentiation) at the CA3-CA1 synapses; (vii) mitigates the neuroinflammatory response (reactive gliosis).

Conclusions These findings point to the NH2htau fragment as a crucial candidate target for AD therapy and prospect the humanized counterpart of murine 12A12mAb (Patent PCT060934 “Antibody directed against a tau-derived neurotoxic peptide and uses thereof” filing date: 27.04.2018) as beneficial in contrasting the early Aβ-dependent and independent neuropathological and cognitive alterations in affected subjects.

Keywords: Tau cleavage, immunotherapy, Alzheimer's Disease (AD)

Contacts: Giuseppina Amadoro e mails: giusy.amadoro@gmail.com; giuseppina.amadoro@cnr.it;
SCOPUS ID: 6507922183 ORCID: https://orcid.org/0000-0003-2080-2951

Website(s):